Skip to main content

Featured

Problem with ram - China, litography, new horizons.

  - Crucial memory kit with motherboard - Official Crucial source Here’s a breakdown of the key "problems" or issues shaping the landscape: 1.  The Great Memory Allocation Shift: AI vs. Consumer The single biggest driver is the  insatiable demand for High-Bandwidth Memory (HBM)  from the AI/GPU sector. Problem:  Semiconductor giants (Samsung, SK Hynix, Micron) are allocating a massive portion of their advanced production capacity to HBM2E, HBM3, and HBM3E to supply NVIDIA, AMD, and custom AI accelerators. This is  cannibalizing production capacity for mainstream GDDR6 (for GPUs) and even DDR5 . Result:  A  tight supply and higher prices  for consumer-grade DRAM, especially for higher-capacity DDR5 modules and GDDR6 on mid-to-high-end graphics cards. The market is essentially in a state of  "AI memory first." 2.  The DDR4-to-DDR5 Transition Pains The industry is in the middle of a prolonged transition, creating a split market. Proble...

The evolution of USB-C capabilities and why its amazing


Picture above of USB-C cable with dissplay from TOOCKI company 


Introduction

USB Type-C, commonly known as USB-C, has revolutionized the way we connect and power our devices. This versatile connector has become the standard for many modern gadgets, offering a range of functionalities from data transfer to video streaming. Let’s dive into the history, types, and capabilities of USB-C.

History of USB Type-C

The USB Type-C connector was developed by a consortium of companies, including Intel, Apple, and Microsoft, under the USB Implementers Forum (USB-IF). The specification for USB-C was first published on August 11, 2014. It was designed to replace the older USB connectors (Type-A and Type-B) with a more versatile and user-friendly option.

Data Transfer Capabilities

USB-C supports various data transfer protocols, making it incredibly versatile. Here are the key versions and their data transfer speeds:

  • USB 2.0: Up to 480 Mbps

  • USB 3.0 (also known as USB 3.1 Gen 1): Up to 5 Gbps

  • USB 3.1 Gen 2: Up to 10 Gbps

  • USB 3.2: Up to 20 Gbps (with two lanes of 10 Gbps each)

  • USB4: Up to 40 Gbps

Table above from PCMAG.com

These speeds make USB-C suitable for a wide range of applications, from simple file transfers to high-speed data communication between devices.

Types of USB Type-C

USB-C is not just a single type of connector but a family of connectors that support different functionalities. Here are the main types:

  1. Standard USB-C: Supports basic data transfer and charging.

  2. USB-C with Power Delivery (PD): Allows for higher power delivery, up to 100W, making it suitable for charging laptops and other power-hungry devices.

  3. USB-C with Alternate Mode: Supports video output through protocols like DisplayPort and HDMI.

  4. Thunderbolt 3 and 4: Uses the USB-C connector but offers higher data transfer speeds (up to 40 Gbps) and supports video output and power delivery.


Video Streaming Capabilities

Not all USB-C cables support video streaming. For a USB-C cable to carry video signals, it must support Alternate Mode. This mode allows the USB-C connector to transmit video signals using protocols like DisplayPort or HDMI. Here are the key points:

  • DisplayPort Alternate Mode (DP Alt Mode): Enables the USB-C cable to carry DisplayPort signals, allowing for high-resolution video output.

  • Thunderbolt 3 and 4: These standards use the USB-C connector and support video output, data transfer, and power delivery simultaneously.

Conclusion

USB Type-C has become the go-to connector for modern devices due to its versatility and high performance. From fast data transfers to video streaming and power delivery, USB-C covers a wide range of functionalities, making it an essential part of today’s technology landscape.


Comments